3x^2/5+20=27

Simple and best practice solution for 3x^2/5+20=27 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2/5+20=27 equation:



3x^2/5+20=27
We move all terms to the left:
3x^2/5+20-(27)=0
We add all the numbers together, and all the variables
3x^2/5-7=0
We multiply all the terms by the denominator
3x^2-7*5=0
We add all the numbers together, and all the variables
3x^2-35=0
a = 3; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·3·(-35)
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{105}}{2*3}=\frac{0-2\sqrt{105}}{6} =-\frac{2\sqrt{105}}{6} =-\frac{\sqrt{105}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{105}}{2*3}=\frac{0+2\sqrt{105}}{6} =\frac{2\sqrt{105}}{6} =\frac{\sqrt{105}}{3} $

See similar equations:

| -5(8x-2)=250 | | 10y+2/4y+2=8/9 | | 17x-6=5x+18 | | -108=-8(1x+7)-5x | | 17-6=5x+18 | | 6(2n=5)=66 | | 2x+(5)/(8)=5x-(19)/(8) | | -8=-(2x-4) | | 0.2x+0.5=4 | | -5y+9=51 | | -2p-9+3p=6 | | y=4y+716 | | y+1/2=2(y-1) | | 7n+3=3n=27 | | 51-9x=11+11x | | (w/3)=4.8 | | 0.6h-5.6=3-1.4(h-1) | | -5j=-20-7j | | -2=4.6-13x | | 4-2*3=w | | X+8=6x+20 | | –3(2–5w)=9w+66 | | -4x-33=-45 | | -7x+52=31 | | 2.5/7=5/x | | w^2-16w-47=0 | | 5-2y=21 | | 28,8x-16-21,42=21,7x-16,12 | | 1x-4=6x+26 | | 4(1-x)+3=-2(1x+1) | | 4(1-x)+3=-2(1x+1 | | 3x+5=(4x-2) |

Equations solver categories